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Abstract

We develop a level set method for the computation of multi-valued physical observables (density, velocity, energy,
etc.) for the high frequency limit of symmetric hyperbolic systems in any number of space dimensions. We take two
approaches to derive the method.

The first one starts with a weakly coupled system of an eikonal equation for phase S and a transport equation for
density q:
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otS þ Hðx;rSÞ ¼ 0; ðt; xÞ 2 Rþ � Rn;

otqþrx � ðqrpHðx;rxSÞÞ ¼ 0.
The main idea is to evolve the density near the n-dimensional bi-characteristic manifold of the eikonal (Hamiltonian–
Jacobi) equation, which is identified as the common zeros of n level set functions in phase space ðx; kÞ 2 R2n. These level
set functions are generated from solving the Liouville equation with initial data chosen to embed the phase gradient.
Simultaneously, we track a new quantity f = q(t,x,k)|det($k/)| by solving again the Liouville equation near the obtained
zero level set / = 0 but with initial density as initial data. The multi-valued density and higher moments are thus re-
solved by integrating f along the bi-characteristic manifold in the phase directions.

The second one uses the high frequency limit of symmetric hyperbolic systems derived by the Wigner transform. This
gives rise to Liouville equations in the phase space with measure-valued solution in its initial data. Due to the linearity
of the Liouville equation we can decompose the density distribution into products of function, each of which solves the
Liouville equation with L1 initial data on any bounded domain. It yields higher order moments such as energy and
energy flux.
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The main advantages of these new approaches, in contrast to the standard kinetic equation approach using the Liou-
ville equation with a Dirac measure initial data, include: (1) the Liouville equations are solved with L1 initial data, and
a singular integral involving the Dirac-d function is evaluated only in the post-processing step, thus avoiding oscilla-
tions and excessive numerical smearing; (2) a local level set method can be utilized to significantly reduce the compu-
tation in the phase space. These methods can be used to compute all physical observables for multi-dimensional
problems.

Our method applies to the wave fields corresponding to simple eigenvalues of the dispersion matrix. One such exam-
ple is the wave equation, which will be studied numerically in this paper.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Many wave equations arising from physical problems can be written as symmetric hyperbolic systems of
the form:1
1 Th
AðxÞ oue
ot

þ
Xn
j¼1

Dj oue

oxj
¼ 0; ð1:1Þ

ueð0; xÞ ¼ BðxÞe
iS0ðxÞ

e ; ð1:2Þ
where ue 2 CM is a complex-valued vector and x 2 Rd . We assume that the matrix A(x) is symmetric and
positive definite and that the matrices Dj are symmetric and independent of x and t. Here, e is a small
parameter that characterizes the wave length of the oscillations. In most physical applications, e is very
small when compared with the domain length of the problem. Numerical computations based on direct sim-
ulation of (1.1) and (1.2) are prohibitively expensive.

An effective numerical method to resolve highly oscillatory waves is to solve the limiting problem when
e ! 0. This corresponds to geometric optics in wave propagation, and the semiclassical limit of the Schrö-
dinger equation. For a smooth non-linear Hamiltonian H(x,k): Rn � Rn ! R1, the classical WKB method
for high frequency wave propagation typically results in a weakly coupled system of an eikonal equation for
phase S and a transport equation for density q, respectively:
otS þ Hðx;rSÞ ¼ 0; ðt; xÞ 2 Rþ � Rn; ð1:3Þ
otqþrx � ðqrkHðx;rxSÞÞ ¼ 0. ð1:4Þ
Examples of such systems arise in, for example, the semiclassical limit of the Schrödinger equation
ðH ¼ 1

2
jkj2 þ V ðxÞÞ and the geometrical limit of the wave equation (H = c(x)|k|).

Instead of the oscillatory wave field, the unknowns in this approximate WKB system are the phase and
the density, neither of which depends on the small scale e. Instead they vary on a much coarser scale than
the wave field. Hence they are, in principle, easier to compute numerically.

However, a well known drawback of this approach is the lack of the superposition principle when a
linear system, in the limit e ! 0, is replaced by a fully non-linear PDE (1.3). The solution of a non-linear
eikonal equation, in general, develops singularities in finite time. Viscosity solutions were introduced in [8]
e conventional summation is used here: repeated Latin indices are summed, while repeated Greek indices are not summed.
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to mathematically select a unique, single valued weak solution. Unfortunately, this class of weak solutions
is not appropriate in treating linear wave propagation problems. Instead, multi-valued solutions that cor-
respond to crossing waves are the physically relevant ones. Developing efficient numerical methods for
these highly oscillatory waves has become a very active area of research in recent years [1–6,9–
12,15,18,19,21–24,26,28,30]. These solutions become multi-valued in the physical space, imposing tremen-
dous numerical challenges.

Let v = $xS denote the phase gradient. Then for smooth solutions, the gradient of the eikonal equation
(1.3) satisfies a quasilinear hyperbolic equation with a forcing term
otvþrxHðx; vÞ ¼ 0. ð1:5Þ

A level set method was introduced in [6,23] to compute the multi-valued solution to (1.5). In this method,
the phase gradient v = $xS is embedded into an n-dimensional manifold, which corresponds to the inter-
section of the zero level sets of n functions,
/ðt; x; kÞ ¼ 0 at k ¼ rxS;
satisfying the Liouville equation
ot/þrkH � rx/�rxH � rk/ ¼ 0. ð1:6Þ

In general, Eq. (1.3) is not homogeneous of degree one in the gradient, and consequently, the phase value S
is not a constant along the characteristics. Therefore, to compute the multi-valued phase S, satisfying (1.3)
the authors in [6] suggest solving an additional level set function in the augmented space (x,k,z) with
z = S(t,x).

The computation of density q, and other physical observables, was addressed in [22] for the linear
Schrödinger equation. The advantage of this method is that we avoided the computation of the Dirac mea-
sure-valued solution. We only need to solve a Liouville equation with initial data in L1 space in a bounded
computational domain.

In this paper, we extend our previous approaches to general symmetric hyperbolic systems (1.1) and
(1.2). While the eikonal equation (1.1) can be solved using the level set method given in [6,23] for multi-
valued quantities, the aim here is to solve numerically for the density q and other physical observables that
can be defined as the moments of the Wigner function. We adopt two approaches. One begins with the
transport Eq. (1.4), and follows the path of [22] to derive a Liouville equation for density in the phase space,
using an appropriate initial data. The second approach is based on the derivation of the high frequency
limit of the symmetric hyperbolic systems using the Wigner function [29], which yields higher moments such
as energy and energy flux.

We sketch our main idea of the first approach for the 1-D setting. We use a level set function / in the
phase space, (x,k) 2 R2 with k = v. As shown in [6,23], the scalar level set function /(t,x,k) satisfies a linear
Liouville equation
ot/þ Hk/x � Hx/k ¼ 0. ð1:7Þ

The zero level set of this function, initialized as k � oxS0(x), forms a one-dimensional manifold in (x,k)
space. We need to perform integration along this manifold to obtain the physical observables.

We show that the WKB systems (1.3) and (1.4) can be rewritten in phase space as:
ot~S þ Hkox~S � Hxok~S ¼ kHk � H ; ð1:8Þ
ot~qþ Hkox~q� oxHok~q ¼ �qG; ð1:9Þ
where ð~S; ~qÞðt; x; vðt; xÞÞ ¼ ðS; qÞðt; xÞ and
G ¼ Hkx � Hkk
/x

/k
.
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As we mentioned earlier, one strategy to resolve ~S is to look at the graph of the function z ¼ ~Sðx; tÞ in the
whole domain and project the phase value onto the manifold / = 0, see [6].

An obvious difficulty in resolving ~q is the need to handle the singularity in G when /k becomes null. Fol-
lowing [22], we shall track the new quantity
f ðt; x; kÞ :¼ ~qðt; x; kÞjok/j;

which is shown to satisfy again the Liouville equation
otf þ Hkoxf � Hxokf ¼ 0; f ð0; x; kÞ ¼ q0ðxÞ;

i.e., the concentration singularities in q are cancelled out by the zeros of ok/!

The combination of the level set function / and the function f enables us to compute the desired density
and the velocity via integrations:
�qðx; tÞ ¼
Z

f ðt; x; kÞdð/Þ dk; ð1:10Þ

�vðx; tÞ ¼ 1

�q

Z
kf ðt; x; kÞdð/Þ dk. ð1:11Þ
This paper is organized as follows. Section 2 is devoted to a derivation of the equation for the new quan-
tity f as well as the justification of the integration procedure. In Section 3, we discuss several wave equations
to which the approach introduced in Section 2 applies. In Section 4, we study general symmetric hyperbolic
systems using the Wigner approach introduced in [29]. In Section 5, we describe the numerical strategy
explored in this paper and present some numerical results.
2. Level set formulation

The first part of our method consists of tracking the bi-characteristics of Hamilton–Jacobi equation (1.3)
in the phase space, using the level set method developed in [6,23].

The bi-characteristics for the phase equation (1.3), or (1.5), are governed by the Hamiltonian system:
dx

dt
¼ rkHðx; kÞ; xð0Þ ¼ a; ð2:1Þ

dk

dt
¼ �rxHðx; kÞ; kð0Þ ¼ rxS0ðaÞ � v0ðaÞ. ð2:2Þ
In this section, we first review our previous level set equations for multi-valued velocity and phases, and
then develop a new method for computing multi-valued density and other physical observables via the solu-
tion of the Liouville equation.

2.1. Multi-valued velocity and phase

As we mentioned in Section 1, the multi-valued phase gradient or velocity may be implicitly realized as
the zero vector level set of the functions /ðt; x; kÞ 2 Rn, satisfying the Liouville equation
ot/þrkH � rx/�rxH � rk/ ¼ 0; ð2:3Þ

subject to initial data /(0,x,k) = k � $xS0(x) or its smooth approximation. Such a zero level set represents
the n-dimensional bi-characteristic manifold in phase space ðx; kÞ 2 Rn�n and gives implicitly the multi-
valued phase gradient; i.e.
/ðt; x; kÞ ¼ 0; k ¼ rxS.
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However, the phase S cannot be obtained from solving the Liouville equation (2.3), since S is usually not
preserved along the Hamiltonian flow. Instead, in the phase space (x,k) the phase solves a forced transport
equation
ot~S þrkH � rx
~S �rxH � rk

~S ¼ k � rkH � H ; ð2:4Þ
for further details see [6], where the authors solve this linear transport equation and then project the ob-
tained phase value onto the n-dimensional manifold / = 0, and thus resolve the multi-valued phase in
the physical space.
2.2. Multi-valued density

In the physical space, we rewrite the density equation (1.3) as
otqþrkH � rxq ¼ �qG; ð2:5Þ
where
G :¼ rx � rkHðx; kÞ; k ¼ rxSðt;xÞ ¼ vðt; xÞ. ð2:6Þ
In order to obtain the evolution equation for density in the phase space, we need to use the bi-characteristic
field as shown in the following

Lemma 2.1. Let ~vðt; x; kÞ be a representative of v(t,x) in the phase space such that ~vðt; x; vðt; xÞÞ ¼ vðt; xÞ.
Then
otvþrkH � rxv ¼ L~vðt;x; kÞ;

where
L :¼ ot þrk � rx �rx � rk
denotes the Liouville operator.

Proof. Using the fact that ~vðt; x; vðt; xÞÞ ¼ vðt; xÞ, we have:
otv ¼ ot~vþrk~vðt; x; kÞ � otv;
oxj v ¼ oxj~vþrp~v � oxjv; i ¼ 1; . . . ; n.
Thus, a straightforward calculation yields
otvþrkH � rxv ¼ ot~vþrkH � rx~vþ ðotvþrkH � rxvÞ � rk~v;
which when combined with the velocity equation (1.5) leads the RHS to L~v as asserted. h

Based on this lemma and (2.5) we have
L~q ¼ �~qG. ð2:7Þ

We still need to evaluate G, given in (2.6), in the phase space via the level set function /. Let Q := $k/
(t,x,k), the invertibility of Q is assumed in our formal derivation. The differentiation of /(t,x,v(t,x)) = 0
gives
otv ¼ �Q�1ot/; oxjv ¼ �Q�1oxj/; j ¼ 1; . . . ; n;
which used in (2.6) leads to
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G ¼
Xn
j¼1

Hxjkj �
Xn
j;l¼1

HkjklðQ�1/xjÞ
l. ð2:8Þ
Following [22], we evaluate the multi-valued density in the physical space by projecting its value in phase
space (x,k) onto the manifold / = 0, i.e., for any x we compute
�qðx; tÞ ¼
Z

qðt; x; kÞjJðt; x; kÞjdð/Þ dk;
where
J :¼ detðrk/Þ ¼ detðQÞ.

Such a Jacobian matrix actually solves
LðJÞ ¼ JG. ð2:9Þ

We shall prove this below. Combining this result with the density equation (2.7) gives us
L ~qðt; x; kÞjJðt; x; kÞjð Þ ¼ 0.
This equation suggests that we just need to compute the quantity
f ðt; x; kÞ :¼ ~qðt; x; kÞjJðt; x; kÞj; ð2:10Þ

by solving the Liouville equation
otf þrkH � rxf �rxH � rkf ¼ 0; ð2:11Þ

subject to the initial condition
f0 ¼ q0ðxÞJ 0ðx; kÞ;
where J0 = 1 if /0 = k � $xS0 is smooth and J0 = |det(Q0(x,k))| for /0 chosen otherwise.
With this quantity f the singularities in density q are cancelled out by the zeros of J(/)! Thus, we can

locally compute the density and flux by integration of f and kf along fk 2 Rn : /ðx; kÞ ¼ 0g
�qðxÞ ¼
Z
Rd

f ðx; k; tÞdð/ðx; kÞÞ dk ð2:12Þ
and the momentum is determined by
quðxÞ ¼
Z
Rd

kf ðx;kÞdð/ðx; kÞÞ dk; ð2:13Þ
where dð/Þ :¼
Qn

i¼1dð/iÞ with /i being the ith component of /.
We now turn to justify the claim (2.9). By taking the gradient of the Liouville equation (2.3) with respect

to k we obtain the following equation for Q = $k/
LðQÞ ¼ rkðL/Þ þ QrkrxH �rx/D2
kH ¼ QrkrxH �rx/D2

kH ;
where the matrices rkrxH :¼ ðHxjklÞ and D2
kH :¼ ðHkjklÞ. Using the fact that for J = det(Q) the following

holds [22]:
fot;rx;kgJ ¼ JTrðQ�1fot;rx;kgQÞ; ð2:14Þ

we have
LðJÞ ¼ JTrðQ�1LðQÞÞ;

where Tr is the usual trace map. This implies that
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LðJÞ ¼ JTrðQ�1QrkrxH � Q�1rx/D2
kHÞ ¼ J TrðrkrxHÞ � TrðQ�1rx/D2

kHÞ
� �

¼ J
Xn
j¼1

Hxjkj �
Xn
j;l¼1

ðQ�1/xjÞ
lHklkj

" #
¼ JG;
as claimed in (2.9). For reader�s convenience, an alternative direct proof is provided in Appendix A.
3. Applications

As mentioned in Section 1 our approach can, in principle, be applied to a large class of wave propagation
problems provided that their WKB approximations can be described by the system of the form (1.3). In
addition to the Schrödinger equation treated in [22], we now discuss possible applications to optical waves
and the acoustic waves, among others.

3.1. Optical waves

We begin with the linear scalar wave equation
o2t u� c2ðxÞDu ¼ 0; ðt; xÞ 2 Rþ � Rn; ð3:1Þ

where c(x) is the local speed of wave propagation of the medium. We complement (3.1) with highly oscil-
latory initial data that generate high frequency solutions. The derivation of the geometrical optics equations
in the linear case is classical and performed based on the usual asymptotic WKB expansion [20],
uðt; xÞ ¼ Aðt; xÞei
Sðt;xÞ

e ; ð3:2Þ

with
Aðt; xÞ ¼
X1
l¼0

elAlðt; xÞi�l.
We now substitute the expression (3.2) into (3.1) and equate coefficients of powers of e to zero. For e2, this,
due to the sign ambiguity, gives two eikonal equations
otS � cðxÞjrxSj ¼ 0. ð3:3Þ

Without loss of generality we will henceforth consider the one with a plus sign. For e1, we get the transport
equation for the first amplitude term,
otA0 þ cðxÞrxS � rxA0

jrxSj
þ c2DS � o

2
t S

2cjrxSj
A0 ¼ 0. ð3:4Þ
In order to use the approach introduced in Section 2, we need to further simplify this transport equation
and find a quantity q so that both S and q solve the system (1.3) with H(x,k) = c(x)|k|.

To this end, we apply the differential operator ot to the eikonal equation otS + c(x)|$xS| = 0,
o
2
t S ¼ �cðxÞotjrxSj ¼ �cðxÞ rxS

jrxSj
� rxotS ¼ cðxÞ rxS

jrxSj
� rxðcðxÞjrxSjÞ.
This enables us to simplify the coefficient of A0/2 in (3.4) as
c2DS � o2t S
cjrxSj

¼ c
DS

jrxSj
� rxS

jrxSj2
� rxðcðxÞjrxSjÞ ¼ rx � cðxÞ rxS

jrxSj

� �
� 2rxc �

rxS
jrxSj

.
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Thereby (3.4) can be rewritten as
otA
2
0 þ c

rxS
jrxSj

� rxA
2
0 þ rx � cðxÞ rxS

jrxSj

� �
� 2rxc �

rxS
jrxSj

� �
A2
0 ¼ 0;
that is
otA
2
0 þ c2rx � A2

0

rxS
cðxÞjrxSj

� �
¼ 0.
This suggests that q ¼ A2
0=c

2 satisfies the conservative transport equation
otqþrx � ðqrxHðx;rxSÞÞ ¼ 0
with H(x,k) = c(x)|k|. We also note that for the eikonal equation with negative sign the weighted density
A2
0=c

2 still satisfies the above conservative transport equation except for H(x,k) = �c|k|.
3.2. Acoustic waves

We will now examine the possible applications to acoustic wave equations. Consider the acoustic equa-
tions for the velocity and pressure disturbances v and p:
qðxÞotvþrxp ¼ 0; ð3:5Þ
jðxÞotp þrx � v ¼ 0. ð3:6Þ
Here, q is the density and j is the compressibility. With oscillatory initial data of the form
uð0; xÞ ¼ u0ðxÞ expðiS0ðxÞ=eÞ;

where u = (v,p) and S0 is the initial phase function, we can look for the WKB asymptotic solution
uðt; xÞ ¼ Aðt; x; eÞ expðiSðt; xÞ=eÞ.

Note that (3.5) is a symmetric hyperbolic system and the result in [29] can be directly applied. For acoustic
waves there are four wave modes, two transverse ones are non-propagating, and two longitudinal waves are
propagating with speed ±v(x), vðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxÞjðxÞ

p
.

Let k̂ ¼ ðsin h cos/; sin h sin/; cos hÞ, the vector
bþðx; k̂Þ :¼ k̂ffiffiffiffiffiffi
2q

p ;
1ffiffiffiffiffiffi
2j

p
 !
and define an amplitude function A in the direction of b+ as
Aðt; x; 0Þ ¼ AðxÞbþðx;rxSÞ.

According to those justified in [29], the non-negative function g ¼ jAj2 satisfies
otgþrx � ðgrpHðx;rxSÞÞ ¼ 0
coupled with the eikonal equation
otS þ Hðx;rxSÞ ¼ 0;
where H(x,k) = v(x)|k| is a single eigenvalue of the so called dispersive matrix given in [29]. The other lon-
gitudinal wave mode is simply identified by taking H(x,k) = �v(x)|k|. This again falls into our framework
outlined in Section 2.
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4. General symmetric hyperbolic systems

In this section, we formulate the level set approach for the general symmetric hyperbolic systems.
The formulation is based on the derivation of the high frequency approximation using the Wigner
transformation carried out in [29]. For rigorous justification of such limits see for example [16]. It en-
ables one to compute the higher order physical observables or moments, such as the energy and energy
flux.

Consider symmetric hyperbolic systems of the form:
AðxÞ oue
ot

þ
Xn
j¼1

Dj oue

oxj
¼ 0; ð4:1Þ

ueð0; xÞ ¼ BðxÞe
iS0ðxÞ

e ; ð4:2Þ
where ue 2 CM is a complex-valued vector and x 2 Rn. Assume that the matrix A(x) is symmetric and po-
sitive definite and that the matrices Dj are symmetric and independent of x and t.

The energy density E for solution of (4.1) is given by the inner product
Eðt; xÞ ¼ 1

2
ðAðxÞueðt; xÞ; ueðt; xÞÞ ¼

1

2

Xn
j;l¼1

AjlðxÞue;jðt; xÞue;lðt; xÞ ð4:3Þ
and the energy flux FðxÞ by
Fjðt; xÞ ¼ 1
2
ðDjueðt; xÞ; ueðt; xÞÞ. ð4:4Þ
Taking the inner product of (4.1) with u(t,x) yields the energy conservation law
oE

ot
þr �F ¼ 0. ð4:5Þ
Integration of (4.5) shows that the total energy is conserved:
o

ot

Z
Eðt; xÞ dx ¼ 0. ð4:6Þ
Introduce the new inner product
hu; viA ¼ ðAu; vÞ. ð4:7Þ

Then the energy density is E ¼ 1

2
hu; uiA. Define the scaled Wigner transformation
W eðt; x; kÞ ¼ 1

2p

� �d Z
eik�yueðt; x� ey=2Þu�e ðxþ ey=2Þ dy; ð4:8Þ
where u� ¼ �uT is the conjugate transpose of u. The matrix W(t,x,k) is Hermitian but not necessarily positive
definite. It becomes positive definite in the limit e ! 0. It has the properties
Z

W eðt; x; kÞdk ¼ ueðt; xÞu�e ðt; xÞ. ð4:9Þ
The energy density can be expressed in terms of W(t,x,k) by
Eðt; xÞ ¼ 1

2

Z
TrðAðxÞW eðt; x; kÞÞdk; ð4:10Þ
while the energy flux Fðt; xÞ can be recovered from
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Fjðt; x; kÞ ¼
1

2

Z
TrðDjW eðt; x; kÞÞ dk. ð4:11Þ
Introduce the dispersion matrix L(x,k)
Lðx; kÞ ¼ A�1ðxÞkiDi. ð4:12Þ
It is self-adjoint with respect to the inner product Æ,æA:
hLu; viA ¼ hu; LviA. ð4:13Þ
Therefore, all its eigenvalues xs are real and the corresponding eigenvectors bs can be chosen to be orthog-
onal with respect to Æ,æA:
Lðx; kÞbsðx; kÞ ¼ xsðx; kÞbsðx; kÞ; hbs; bbiA ¼ dsb. ð4:14Þ
We assume that the eigenvalues have constant multiplicity independent of x,k. This hypothesis is satisfied
by many physical examples including those under study in this paper.
4.1. Case I: the dispersion matrix has only simple eigenvalues

We first assume that all the eigenvalues xs(x,k) are simple. Define the matrices Bs(x,k) by
Bsðx; kÞ ¼ bsðx; kÞbs�ðx; kÞ. ð4:15Þ

In the limit e ! 0, the Wigner matrix We(t,x,k) is approximated by W(0)(t,x,k)
W ð0Þðt; x; kÞ ¼
Xn
s¼1

asðt; x;kÞBsðx; kÞ. ð4:16Þ
The scalar function as(t,x,k), determined by the projection
as ¼ TrðAW ð0Þ�ABsÞ ð4:17Þ

solves the Liouville equation
oas

ot
þrkxs � rxas �rxxs � rkas ¼ 0. ð4:18Þ
See [29]. To find the initial data for as, applying (4.2) in (4.8)
W eð0; x; kÞ ¼ 1

2p

� �n Z
eik�yB0ðx� ey=2ÞB�

0ðxþ ey=2ÞeiðS0ðx�ey=2Þ�S0ðxþey=2ÞÞ=e dy. ð4:19Þ
The weak limit of We(0,x,k), in the sense of distribution, is
W ð0Þð0; x; kÞ ¼ B0ðxÞB�
0ðxÞdðk�rS0ðxÞÞ. ð4:20Þ
Using (4.17), one gets
asð0; x; kÞ ¼ TrðAB0B
�
0AB

sÞdðk�rS0ðxÞÞ. ð4:21Þ

Once as is computed, one can obtain W(0) via (4.16), and consequently the energy density using (4.10) and
the flux using (4.11).

Our level set method for (4.18) and (4.21), similar to what was done for the Schrödinger equation in our
previous work [22], consists of solving the following two initial value problems of the Liouville equation
with bounded – rather than measure valued – initial data:
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o/s

ot
þrkxs � rx/

s �rxxs � rk/
s ¼ 0; ð4:22Þ

/sð0; x; kÞ ¼ /s
0ðxÞ; s ¼ 1; . . . ; n; ð4:23Þ

of s

ot
þrkxs � rxf s �rxxs � rkf s ¼ 0; ð4:24Þ

f sð0; x; kÞ ¼ TrðAB0B
�
0AB

sÞjrk/
s
0j; s ¼ 1; . . . ; n; ð4:25Þ
where /s
0 ¼ ks � oxsS0 for S0 2 C1, or the signed distance function otherwise.

Remark. If $S0 is not continuous, then d(k � $S0) in (4.20), and in (4.21), is not well defined. It is still an
open question what the high frequency limit is under this circumstance. Here, assuming that $S0 has simple
jumps along piecewise smooth curves, we can regularize the initial data by embedding the completion of the
subgraph of each component of $S0 in phase space by the signed distance functions /s

0. A similar approach
to Hamilton–Jacobi equations was proposed by Giga and Sato [17]. See also [31]. It remains a question that
how to regularize the WKB initial data (4.2) so that in the high frequency limit this regularized initial data
(via the signed distance function) is obtained.

We have the following theorem.

Theorem 4.1. Let / = (/1, . . . ,/n)T. If xs is smooth, then solution to (4.18), with initial data
asð0; x; kÞ ¼ TrðAB0B
�
0AB

sÞjrk/
s
0jdð/

s
0Þ ð4:26Þ
is given by
asðt; x; kÞ ¼ f sðt; x; kÞdð/ðt; x; kÞÞ. ð4:27Þ
Proof. The proof uses simply the method of characteristics. It is the same as the analogous result for the
Schrödinger equation we did in [22]. h
4.2. Case II: the dispersion matrix has multiple eigenvalues

We now consider the case when the dispersion matrix L(x,k) has multiple eigenvalues. Let xs(x,k) be an
eigenvalue of multiplicity r and let the corresponding eigenvectors bs,j, j = 1, . . . ,r be orthonormal with re-
spect to Æ,æA. Given a pair of eigenvectors bs,j,bs,l we define the N · N matrix
Bs;jl ¼ bs;jbs;l�; j; l ¼ 1; . . . ; r. ð4:28Þ

The limiting Wigner matrix W(0)(t,x,k) has the representation
W ð0Þðt; x; kÞ ¼
X
s;j;l

asjlB
s;jlðx; kÞ; ð4:29Þ
where asjl are scalar functions. Define the r · r coherence matrices Ws(t,x,k) by
W s
ijðt; x; kÞ ¼ asjlðt; x; kÞ; j; l ¼ 1; . . . ; r. ð4:30Þ
The coherence matrices Ws(t,x,k) are Hermitian and positive definite because they are projections of the
limiting Wigner matrix W(0)(t,x,k) which is Hermitian and positive definite. The functions asjl are given by
asjlðt; x;kÞ ¼ TrðAW ð0Þðt; x; kÞABs;jlðx; kÞÞ. ð4:31Þ
Then each of the coherence matrices Ws(t,x,k) satisfies the transport equation [29]
oW s

ot
þrkxs � rxW s �rxxs � rkW s þ W sN s � N sW s ¼ 0; ð4:32Þ
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where the skew-symmetric coupling matrices Ns(x,k) are given by
N s
mnðx; kÞ ¼

Xn
j¼1

bs;n;Dj ob
s;m

oxj

� �
� oxs

oxj
Abs;n;

obs;m

okj

� �
� 1

2

o2xs

oxjokj
dnm

� �
. ð4:33Þ
The level set method, described for the simple eigenvalue case, applies now to the case when Ws and Ns

commute. In this case, the matrix Liouville equation (4.32) becomes a homogeneous decoupled scalar Liou-
ville equation for each W s

jl.
4.3. Acoustic waves

Consider the acoustic equations for the velocity and pressure disturbances v and p:
qðxÞotvþrxp ¼ 0; ð4:34Þ
jðxÞotp þrx � v ¼ 0; ð4:35Þ
with oscillatory initial data of the form
uð0; xÞ ¼ u0ðxÞ expðiS0ðxÞ=eÞ;
where u = (v,p) and S0 is the initial phase function. This is a symmetric hyperbolic system and the result in
[29] can be directly applied. We Look for the WKB asymptotic solution
uðt; xÞ ¼ Aðt; x; eÞ expðiSðt; xÞ=eÞ.

Let k̂ ¼ ðsin h cos/; sin h sin/; cos hÞ,
bþðx; k̂Þ :¼ p̂ffiffiffiffiffiffi
2q

p ;
1ffiffiffiffiffiffi
2j

p
� �

;

and define an amplitude function A in the direction of b+ as
Að0; x; 0Þ ¼ A0ðxÞbþðx;rxS0Þ.

The energy density is
E ¼ 1
2
qðxÞjvj2 þ 1

2
jðxÞp2; ð4:36Þ
while the energy flux is
F ¼ pðt; xÞvðt; xÞ. ð4:37Þ

Let vðxÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðxÞqðxÞ

p
. Using the Wigner analysis similar to that in [29], the high frequency approxima-

tion, as e ! 0, is given by:
otaþ þ vðxÞk̂ � rxaþ � jkjrxvðxÞ � rkaþ ¼ 0; ð4:38Þ
aþð0; x; kÞ ¼ A0ðxÞdðk�rS0ðxÞÞ. ð4:39Þ
Now this problem is a particular case of the more general form (4.18) and (4.21). To evaluate the energy
and energy flux one uses:
Eðt; xÞ ¼
Z

aþðt; x; kÞ dk; ð4:40Þ

Fðt; xÞ ¼
Z

k̂vðxÞaþðt; x; kÞ dk. ð4:41Þ



Remark 1. In the level set method for general symmetric hyperbolic systems, the Hamiltonian is assumed
to be smooth. For the acoustic waves, the Hamiltonian has a singularity at k = 0. Thus, the level set method
can only be used when the space gradient $S(t,x) stays away from zero.

Remark 2. The linear scalar wave equation,
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o2t u� c2ðxÞDu ¼ 0; ðt; xÞ 2 Rþ � R3; ð4:42Þ

can be reformulated into the form of acoustic equations via the change of variables

p ¼ �o u; v ¼ ru. ð4:43Þ
t
The corresponding first order system becomes
otvþrp ¼ 0; ð4:44Þ
otp þ c2ðxÞr � v ¼ 0; ð4:45Þ
which is a special case of (4.34) with
qðxÞ ¼ 1; jðxÞ ¼ 1=c2ðxÞ.

This procedure gives an alterative way to compute energy flux and high-order observables for waves gov-
erned by the single wave equation.
5. Numerical implementation and examples

We implement the level set method for the optical wave equation, as discussed in Section 3. We are inter-
ested in computing the amplitude �A

2
. Our algorithm can be summarized as follows.

(1) Initialize: construct the level set functions U0 ¼ ð/ð0Þ
j Þ that embed the initial data $xS0,
/ð0Þ
j ðx; kÞ ¼ kj �

o

oxj
S0ðxÞ; j ¼ 1; . . . ; d;
and the phase space modified amplitude function
f0ðx; kÞ ¼
�A2
0ðxÞ

c2ðxÞ ; 0 < ~k < kj; j ¼ 1; 2; . . . ; d;

0; otherwise.

(

Here, k = (k1,k2, . . . ,kd) and ~k < min16j6d oS0ðxÞ=oxj
�� ��

1 is a predetermined constant.

(2) Evolve the Liouville equation in phase space using /ð0Þ
j and f 0 constructed above as initial conditions:
wt þ cðxÞ k

jkj � rxw�rxcðxÞjkj � rkw ¼ 0
with wðx; k; t ¼ 0Þ ¼ /ð0Þ
j ; j ¼ 1; . . . ; d and f0, respectively. We shall use /j(x,k,t) and f(x,k,t) to de-

note the corresponding solutions.
(3) Evaluate �A

2ðx; tÞ by integrating f along fk 2 Rd n f0g : Uðx; kÞ ¼ 0g:
�A
2ðx; tÞ ¼ c2ðxÞ

Z
Rdnfog

f ðx; k; tÞdðUðx; k; tÞÞ dk;
where dðUÞ :¼
Qn

j¼1dð/jÞ with /j being the jth component of U.
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The numerical techniques related to the simulations below have been documented in our previous papers
as well as many other related works. For advancing the solutions for the Liouville equations, we refer the
readers to [26,22] and also [7]. The papers by Min [25] is particularly useful for efficiency. A good numerical
treatment of delta functions in the level set context was developed in the work of Engquist et al. [13].

There is, however, a minor numerical issue in our current approach to the wave equations that is outside
of the scope of the references listed above. Consider the Hamiltonian H(x,p) = c(x)|p| defined with a
smooth, positive function c(x). The corresponding wave front velocity ~vðx; pÞ ¼ ðcðxÞp=jpj;�rcðxÞjpjÞ is
not defined in the set Op ¼ fðx; pÞ 2 R2d : jpj ¼ 0g. We point out that in the papers [12,26], for example,
the location of a single wave front is tracked by the reduced Liouville equation with p constrained to lie
on the sphere Sd and |p| replaced by 1/c(x). Thus, one does not encounter this singularity. However, wave
fronts in the entire computational domains are tracked simultaneously by our formalism. The singularity in
the velocity field suggests that Op should not be part of the domain and that suitable boundary conditions
may have to be prescribed at oOp � R2d . In the full phase space, the trajectory of a particle under this veloc-
ity field~v, starting from (x0,p0) 62 Op, will never cross Op for all time. This is due to the energy preserving
property of Hamiltonian flows. Thus, the computational domain X � R2d may safely exclude Op. In the
following calculations, we simply place a grid in R2d that does not intersect with Op, and modified our dis-
cretizations for the grid points near the set Op. The exclusion of Op from the domain is a standard idea used
to solve spherically or cylindrically symmetric problems using a spherical or cylindrical coordinate system.
At the regions of oOp where the characteristics are flowing into R2d n Op, we prescribe a dimension-by-
dimension extension boundary condition. Let h denote the mesh size in k. Near Op, i.e. at points (x 0,k 0)
where jk0j 6 h; if oxjcðx0Þ P 0, for some j, we replace backward differencing along the kj-axis (or the cor-
responding WENO discretization) by forward differencing, and vice versa for the case oxjcðx0Þ < 0. This is
equivalent to an extrapolation along the kj-axis, and it somewhat resembles the Ghost Fluid method [14].

Consider the simple 1d example, in which c(x) is increasing. In the upper half-plane of the x � k space,
the velocity is pointing in the positive x-direction and in the negative k-direction. Thus, the level sets of / or
f will bundle up near k = 0+, and the support of f may come exponentially close to the x-axis. On the other
hand, in the lower half-plane, the characteristics are diverging from the x-axis. Fig. 2 illustrates this sce-
nario. Therefore, without enforcing the boundary conditions at oOp, which is the x-axis, an upwind discret-
ization at grid points may eventually propagate portions of the energy (carried by the support of f) across
the x-axis and translate it to the left! Fig. 1 shows such a situation. We point out that if ~k in Step 1 above is
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Fig. 1. Inappropriate upwinding scheme incorrectly propagates an energy packet across the singularity of the velocity field in phase
space. In this case, c 0(x) > 0 and the initial phase function S0(x) is �x2/4. The dashed curve represents the initial amplitude location. It
is transported to the right along in the x-direction. The ‘‘ghost’’ energy is created and transported to the left. The dotted curve
represents the computed multi-valued $xS.
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Fig. 2. Illustration of the Hamiltonian flow of the optical wave equation and the transport of energy in phase space. In this case,
c 0(x) > 0 and the initial phase function S0(x) is �x2/4.

–1 –0.5 0 0.5 1
0

0.5

1

1.5

2

t=0

–1 –0.5 0 0.5 1
0

0.5

1

1.5

2

t=0.2444

–1 –0.5 0 0.5 1
0

0.5

1

1.5

2

t=0.3667

–1 –0.5 0 0.5 1
0

0.5

1

1.5

2

t=0.4889

–1 –0.5 0 0.5 1
0

0.5

1

1.5

2

t=0.7333

–1 –0.5 0 0.5 1
0

0.5

1

1.5

2

t=1.1

Fig. 3. Self-crossing wavefronts in one dimensions.
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big enough compared to the grid and to the time interval of interest, we may not see the stated incorrect
propagation of energy. Furthermore, the solution may develop a large jump across Op and differencing
across a large jump of the level set function may introduce numerical instability and may propagate
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portions of the energy across O, the singularity in the velocity. This potential large jump in /j and f across
Op also suggests the use of a ‘‘one-sided’’ approximate Dirac-d function near Op for better resolution of the
amplitude.

Example 5.1. (1D self-crossing wavefronts) c(x) = 1.0, S0(x) = �(x2 � 0.25)/4, and �A0ðxÞ ¼ v½�0.7;�0.3�[
½0.3; 0.7�ðxÞ, where vX(x) is the characteristic function of the set X. See Fig. 3.

Example 5.2. (1D with variable speed) c(x) = (3 + 1.5 tanh(x)). We ran two simulations using
S0(x) = �x2/4, A0(x) = v[�0.65,�0.35][[0.35,0. 65](x), where vX(x) is the characteristic function of the set X.
The results are shown in Fig. 4.

Example 5.3. (Wave guide) We are interested in a plane wave parallel to the x-axis, travelling in the posi-
tive direction in the z-axis. The index of refraction g(x,y,z) = c�1(x,y,z) = 1 + exp(�x2), is independent of z.
In this case, we can use z as time axis and reduce the problem by one more dimension. The convection in
this reduced phase space, x–h–z space, is
o

oz
uþ tan hux þ

gx
g
uh ¼ 0.
We initialize u(x,h) = h, h 2 [�p/2 + h0,p/2 � h0], x 2 [�3,3] and f ðx; h; z ¼ 0Þ ¼ A2
0ðxÞg2ðxÞ.

Fig. 5 shows the multi-valued wavefront plotted in x � h space (left), and A2(x,z1) = g2(x)�f(x,h,z1)d(/
(x,h,z1))dh plotted as a function of x (right).
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Fig. 4. Energy transport with variable coefficients.
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Fig. 5. The multi-valued wavefronts and the averaged amplitude �A
2
from Example 5.3 are shown, respectively, on the left and right

subfigures.

Fig. 6. Contracting circle. The averaged amplitude �A
2
is plotted at different times.
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Example 5.4. (Contracting circle and ellipse in 2D)
Circle : S0ðx; yÞ ¼ �ðx2 þ y2 � 0.5Þ=2; cðxÞ � 1.A0ðx; yÞ ¼ 0.3 � dcos0.3ð�Sðx; yÞÞ.
Ellipse : S0ðx; yÞ ¼ �ðx2 þ 9y2 � 0.6Þ; cðxÞ � 1.A0ðx; yÞ ¼ 0.3 � dcos0.3ð�Sðx; yÞÞ.

dcosa ðxÞ ¼
1
2a ð1þ cosðpxa ÞÞ; jxj 6 g;

0; jxj > g.

	

Figs. 6 and 7 show the respective �A
2
at different times. In addition, in Fig. 8, we plotted three wave fronts

computed using ray tracing on the ellipses that are initially defined by x2 + 9y2 � r = 0 with r = 0.45, 0.6,
and 0.7.
Fig. 7. Contracting ellipse. The averaged amplitude �A
2
is plotted at different times.



Fig. 8. Contracting ellipse at T = 0.460526. We plotted a three wave fronts underneath the graph of �A
2
; these wave fronts correspond

to the ellipse defined, at T = 0, by the zeros of x2 + 9y2 � r = 0 with r = 0.45, 0.6, and 0.75.

Fig. 9. Contracting circle. The averaged amplitude �A
2
is plotted at different times.
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Example 5.5. (Waveguide) c(x,y) = 2 � exp(�9y2), and S0(x,y) = x,
�A
2

0ðx; yÞ ¼
1; jx� 0.3j 6 0.15;

0; otherwise.

	

Fig. 9 shows four snapshots of the transport of the amplitude �A
2ðx; y; tÞ.
6. Conclusion

We have introduced a systematic level set method for computing the energy transport for high fre-
quency wave propagation problems, including a large class of physically important symmetric hyper-
bolic systems. In our approach, the distribution of energy on the lower dimensional Lagrangian
manifold is implicitly located in phase space by a system of level set functions that solve the Liouville
equation. The evaluation of the observable energy can be performed, at any time needed, by a simple
integration step.

Our method can be applied to a class of problems arising in geometrical optics, seismic imaging and mul-
tiple arrivals where the computation of multi-valued solutions are essential. Recently, there has been an
increasing interest in designing efficient methods with the ability to capture multi-valued physical variables
instead of the viscosity solution, see, e.g. [5,11,12,26–28]. The techniques discussed in this paper are natu-
rally geometrical and very well suited for handling multi-valued solutions.
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Appendix A

In this appendix, we provide an alterative proof of (2.9), which plays a key role in our analysis of Section 2.

First we have
LðJÞ ¼ Lðdetðrk/ÞÞ ¼
Xn
r¼1

det

/1
k1

� � � /1
kr�1

Lð/1
kr
Þ � � � /1

kn

..

. . .
. ..

. ..
. . .

. ..
.

/n
k1

� � � /n
kr�1

Lð/n
kr
Þ � � � /n

kn

0
BB@

1
CCA. ð7:1Þ
From L/i = 0 it follows okrL/
i ¼ 0, which leads to
L/i
kr
¼
X
j

/i
kj
Hxjkr �

X
j

Hkjkr/
i
xj
. ð7:2Þ
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Substituting (7.2) into (7.1) we then obtain
LðJÞ ¼
Xn
r¼1

det

/1
k1

� � �
P
j
/1

kj
Hxjkr � � � /1

kn

..

. . .
. ..

. . .
. ..

.

/n
k1

� � �
P
j
/n

kj
Hxjkr � � � /n

kn

0
BBBBB@

1
CCCCCA

�
Xn
r¼1

det

/1
k1

� � �
P
j
/1

kj
Hkjkr � � � /1

kn

..

. . .
. ..

. . .
. ..

.

/n
k1

� � �
P
j
/n

kj
Hkjkr � � � /n

kn

0
BBBBB@

1
CCCCCA ¼ I þ II .

ð7:3Þ
Now
I ¼
Xn
r¼1

Hxrkr det

/1
k1

� � � /1
kr

� � � /1
kn

..

. . .
. ..

. . .
. ..

.

/n
k1

� � � /n
kr

� � � /n
kn

0
BB@

1
CCA ¼ detðrk/Þ

Xn
r¼1

Hxrkr ¼ J
Xn
i¼1

Hxiki .
Also, using Cramer�s rule we can show that
ððrk/Þ�1/xiÞ
r ¼ 1

detðrk/Þ
det

/1
k1

� � � /1
kr

/1
xi

� � � /1
kn

..

. . .
. ..

. ..
. . .

. ..
.

/n
k1

� � � /n
kr

/n
xi

� � � /n
kn

0
BB@

1
CCA.
So
II ¼ detðrk/Þð�
X
j;r

Hkikrððrk/Þ�1/xiÞ
rÞ ¼ �J

Xn
i;j¼1

HkikjðQ�1/xiÞ
j.
Thus, a substitution of I and II into (7.3) leads to
LðJÞ ¼ J
Xn
i¼1

Hxiki �
Xn
i;j¼1

HkikjðQ�1/xiÞ
j

 !
;

which by (2.8) is as claimed in (2.9).
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